Z&W;” . ?/ 27,752/7&*/&’2

On the Plasma Cerenkov Radiation II

Ralph Guernsey *
and

Richard Gerwin

This work has been partially supported by NASA Grant
NsG "220-62,

s T A il
70 YT EY
N {THRY)
g [ACCESSION NUMBER) e
: {conp
ot
Q {PAGES)
E e %\ % R} \cmeeom
Z 'R' UMBE
5 cRORTMX ORADN
‘é {NASA



I. Introduction

In an earlier reportl (hereinafter referred to as I) the problem
of thé field induced by a test particle injected into an equilibrium plasma
was studied on the basis of the moment equations, with special attention
to the effect of finite particle size and "transient" behavior. In the
present work, we attack the same problem on the basis of the Vlasov equa-
tion, restricting ourselves, however, to the case of 'a point particle.
Theiprincipal qualitative differences may be summarized as follows: (1)
For slow (compared to thermal speed) particles, the leading correction to
Debye-Hiickel has opposite sign in front.of and behind the particle; further-
more it changes sign at about 4.5 Debye lengths ahead of and behind the
particle. Moreover, the amount of induced charge in front of the particle
proves to be slightly less than behind, and there is a "ripple" in the
polarization cloud. The symmetric flattening of the polarization cloud
predicted by the moment equations is a higher order (in the Mach number)
effect. Inasmuch as, for superthermal particles all the charge is behind
the particle, it is not surprising that the first effect of finite particle
speed is for the particle to "lead" its polarization cloud slightly. The
physical origin of the "ripple" is not yet understood. (2) For fast
particles, there is no singularity in the charge density or potential at
the Mach cone, and there is some charge outside the cone. Thus the wake
of the particle is somewhat "smeared out", and lacks the geometric sharp-
ness predicted by the moment equations. Also, the potential near the cone
is exponentially damped along the cone and dies out in a distance of about

a Debye length times the Mach number. Well inside the cone, however, the

decay of the wake is considerably slower.



All of these effects are due to the imaginary part of the dielectric
function, and are thus related to the Landau damping; this explains their
absence from the moment equation theory.

In the next section we derive an expression for the potential in-
duced by a particle of charge q, velocity u, injected into an infinite
equilibrium plasma at t = 0, assuming that the system is adequately
described by the Vlasov and Maxwell equations. The problem is thus
reduced to one of approximate evaluation of certain integrals. These
are carried out in Section 3 (sub-thermal particles) and Section 4
(superthermal particles), with accompanying discussion. Section 5 is

devoted to additional discussion and comparison with previous treatments.

II. Formulation of the Problem

We wish to calculate the field induced by a particle of charge
q, velocity u injected into a plasma initially at equilibrium. The
plasma is assumed to consist of an arbitrary number of types of particle,
where type ¢ has charge e » mass m_, density n It is further assumed
that the evolution of the system is adequately described by the Vlasov
equation (the validity of this assumption will be discussed in Section 5).
For simplicity we will consider only longitudinal fields, and neglect the
reaction of the plasma on the test particle (the generalization to in-
clude transverse fields is straightforward).

If the perturbation of the one-particle distribution function for

type ¢ is



f(%,x,c,t) = f(%,n,t) .

and the test particle is initially at % = 0, one has
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We Fourier-Laplace transform (1)-(3) by
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where these expressions are valid for Imw < 0. Equation (8) may be
used to express (6) and (7) in terms of e; multiplying (6) by e, inte-

grating over n and substituting into (7), one finds

c(k,0) = - 4r(q/k)
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Taking the inverse transforms, one has
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The properties of the dielectric function A™ are well known; denoting
its zeroes as a function of w by wn(k), one may do the w integration

by closing the contour in the upper half-plane to obtain
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Equation (12) is the formal solution of the problem under the
given assumptions; the remainder of the report is devoted to the evaluation
and interpretation of (12) for the limiting cases of small and large u,

where analytical expressions may be obtained.
ITI. Subthermal Particles; Correction to the Debye Potential

We first consider the case where the test particle speed u is much

smaller than the thermal velocity of any of the components. Using
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Now if u << Vo for all o,
en/kV ) < u/V_ << 1,

and we may write
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Then the first term of (12), which we denote by ¢1, may be written
in spherical coordinates, With(,PC - y&t) taken as the z-axis, as
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The angular integrals are straightforward, and one finds
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The k integral in the first term of (20) may be done by contour inte-
gration and leads to the familiar Debye-Hiickel result for the polari-

*
zation cloud about a stationary particle
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The leading correction to the Debye result for slow particles is

given by the second term of (20). This term, first order in the

* At this point we should remark the fact, usually disguised by a
different definition of K, that the moment equation treatment gives a

Debye length which is off by a factor of /3.



particle speed, cannot be obtained from the collision-less moment

equations, as it comes from the imaginary part of the dielectric

function A—. Introducing(; = kl%—gtl .
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one may write the second term of (20) as
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After some algebra and deforming of integration paths, one can express

(24) in terms of exponential integrals. One then finds

L) = - 3 [(1 - %) et ei(-n) + (1 + %) e~ g(x)] , (25)
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It follows that
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It is convenient to calculate the charge density corresponding to (28), by
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As A »- 0, one has
Ei(-1) = (y + log A) + 0(A), A <<1 , (30)
Ei(M) - €i(=2) = 201 + 0(A2)), A <<1 , (31)
whence
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R e VA (32)

It will be observed that (32) is small (because of the small factor o
3 —A
as defined in Eqn. (22) compared to the polarization charge - 9KZe

b A
from (21), but has opposite sign in front of the particle and the same
sign behind. Thus the compensating charge near the particle is reduced

ahead of the particle and increased behind, i.e. the particle is slightly

"ahead" of its polarization cloud.
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On the other hand, for large A, one has

A oL 1 1 2

e81(—>\)%—T(1-T+-)\—2—%+%)’A>>l ’ (33)
and
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It follows that
3,00
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It is apparent from (32), (35), that the correction to the charge
density changes sign at a distance of order a Debye length from the
particle. The exponential integrals éﬁ(fx), ngk) have been tabulated;
the expression (29) is plotted in Fig. 1. It will be observed that the
charge density correction on the axis changes sign at about 4.5 Debye
lengths and has a (small) extremum at about 5.5 Debye lengths, after
which it goes slowly (& A—S) to zero. Equation (29) has been obtained
by Neufeld and Ritchie,2 who did not, however, investigate its properties
or discover the "ripple' apparent in Fig. 1 and (32) and (35).

&)

In view of the sign change of Py *» an additional calculation is
necessary to show that (29) does indeed represent a slight shift of
polarization charge from the front to the rear of the particle. The

total charge contribution in front of the particle from (29) is given by

o | anVw (36)

%0%\1>0
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The integral may be done with the help of a straightforward integration

by parts, and the asymptotic forms (33), (34); one finds

% =% :
which is opposite to the Debye polarization charge as expected. The
charge behind the particle is given by Q_ = —Q+, so it is evident that
(29) gives no contribution to the total net polarization charge, but
represents a slight shift of charge from the front to the rear of the
particle.

1)

One additional peculiarity of the correction Py should be men-
tioned; from the definitions (22) and (17), the largest contributioms
came from the slowest (and thus the most massive) ions.

We now turn to the last term of (20). The k integral may be done

straightforwardly, if tediously, by contour integration, and one finds

1 -3u2 21 -3u32)
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*
with the corresponding charge density (the quantities o and B are

defined in (22))

* Note that u, = &'%/(Au) must he differentiated in calculating (38).



@

2,2
ki)
s [l - “oz"] (38)

We make the following observations about (37) and (38): (a) The
correction to the potential (but not the charge density correction)
has a tail which is not exponentially damped, but goes as A—s. This
tail is opposite in sign to the Debye potential near the path
(]uo|<1//§)and has the same sign near the mid-plane. (b) The charge
density described by (38) is distributed as described in Fig. 2(a).
Inasmuch as the Debye polarization cloud is negative (for positive q),
we see that the polarization cloud is reduced in the outer region and
the inner teardrop shaped regions marked (+), and enhanced in the
region marked (-). Thus even this correction is not a simple flattening
of the polarization cloud as predicted by the moment equations. In
fact, one may demonstrate that the transfer of charge from the "teardrop"
regions is somewhat larger than that from the outer region. If we
assume that the slowest ion is much slower than the next slowest, so

that B ¥ mo?, one finds for the total charge in the "teardrop" regions

/ 3/2

(8/m) ~A(8
3.2.2 d)\_)\e (_ —A)
G- | @ e P rEgeE :
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4
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where Vi is the "teardrop" region defined by

(8/m) = A
A< 8/m, |ul <V(8/,,)(>\+1) ) ’
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and the finite integral in (39) has been calculated approximately by
numerical integration.

Similarly the charge in the "outer" region is given by

34 1 §q2
Q2'0=J 0P o ¥ &L J dire *;%--A(H-_%T-)
1+(8/m)
[o]
+16/3m) + 2/3) 0 - 202 - @/m G+ ) 1/2§ .13qk302 (40)
where the region Vo is defined by
A — (8/m)

A> 148/, u > \A2 —G/MO+ D

(c) Equation (38) represents a redistribution of charge, not an addition
or subtraction; the total amount of charge remains constant as can be

shown by the direct calculation of
- (2) -
Q, = J o, ") = 0

(d) The discrepancy between the results of I and the correction (38) is
not entirely due to the neglect of the imaginary part of the dielectric
function (unlike the first order correction (29) which is missed by

the moment equation treatment). If we had neglected the imaginary part
of A , we would have found a charge distribution like that depicted in
Fig. 2(b) (which is the opposite of a flattening of the polarization
cloud?). On the other hand, if one expands the slow particle result

of I in powers of the Mach number, the first correction (O(M-z)) to the

Debye cloud resembles Fig. 2(b) except that the Debye length is off by
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a factor of V3 and the charge correction has opposite sign. This can
be understood noting that the neglect of the imaginary part of A~
(cf. (17)) leads, for an electron gas in a positive background, to

1 . K2 2K (o) 2
: -1-+=- + + 0(
- k2+Kz 2 2\2y 2
A (%-%,k) (k¢ + K2) Ve

M*) )

whereas the moment equations (compare the first term of (12) with

(I.32)) give, in our notation

2(kn)? ‘
1 1 N
—_—— 1 > - (R2/3) [ + 0(M*)
2 () k® + K?/3 7 3V _2(k® + K7/3)%

Thus it is apparent that the moment equations give the wrong sign on
the 0(M?) correction to the real part of the dielectric function.
From the above, we are forced to conclude that the moment equations

lead to results for slow particles which are qualitatively incorrect in almost

every detail (a fact which should not greatly surprise anyone who has
tried to estimate the range of validity of the moment equation treatment).
Finally, we turn to the "transient" contribution given by the second
term of (12). 1In view of the exponential factor, we may restrict our-
selves to k << K. (The contributions neglected thereby will be damped
exponentially in time with a lifetime of order a plasma period. It will
be gecalled that we are assuming Maxwellian £, and thus need not worry
about growing roots of A_(w,%) = 0,) For simplicity we consider a
two-component system in which the ions and electrons have the same
temperatures and the ions are much heavier than the electrons. Then
the least damped roots of A_(w,%) = ( are given approximately by the

Landau poles
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w+(k) =+ k) + iy(k) (41)
where
6k2
Q2(k) = w02 (1 + F) R (42)
K2
/-3 = 712
wo Te 3K3 e 4k
Y(k) = 8k_3 3 (43)
with
w, = 4 iy s (44)

and K is given by (19). Equations (42), (43) differ slightly from the
usual forms because, from the outset, we have taken K to be the total
Debye wave number, not just the electron contribution (observe that
electrons and singly charged ions of the same temperature give equal
contributions to (19)). 1Imn deriving (42), (43) we have neglected
terms proportional to the mass ratios which could easily be included

and would not change the general character of the result. In view of

(41)-(43) we have

R ku », ku k| u
Wy - Iz’-i_lm “o e <E) Ve <t )

-1
s0 that the denominator (wn - 5'&) in the second term of (12) may

be expanded, and we will keep only the first two terms (the §-function

contribution is, of course, negligibly small). Furthermore

dA (w!k) O2
r\}

w-w, (k)
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It follows that we may write the second term of (12) approximately as

4, = %gg J %5 e—F%;)T (11233) sinL;LcosT(l+3§?) +
0

L s
Zk'% W 1_ Lz sinT(14372) + sinL} SinT(l+3K2)
-fzv—e Z/ cos 3/ f L;", ¢ (47)
where
GG ETRE Tout “e
and
I (k/K)= lwﬂ)— , (49)

o

i.e. I' is y made dimensionless and expressed in terms of the dimensionless
wave number. Note that the distance R is the distance from the initial
position of the particle, not from the present position of the particle

(which is R - gt). Thus in the neighborhood of the particle,
L ¥ Kut << T & RV t (50)

Now for';pK,l, Pg;) % 1, so contributions from this region will be
exponentially damped. On the other hand, for g;<< 1, ng) -+ 0; therefore
we may estimate (47) by replacing the limits by.(O,l) and dropping the
factor e—PT. It should be emphasized that there are terms which go as
ebT; however, the main contribution will be shown to decay much more

slowly.
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The form of (47) strongly suggests that the result may be expressed
in terms of Fresnel integrals, and this is indeed the case; but the
resulting expression is so long as to be unwieldy. However, two important
limiting cases can be approximated without difficulty. Firstly, if

T >> L2, the rapid oscillations of the factors cosT(l+%§?), sinT(l+%;?),
-1/2

insure that the main contribution to the integrand comes frtmlg/é (37) ,

so that %;_é L . 1. It follows that we can 1etég_+ 0, except in the
V3T '

rapidly oscillating factors to obtain
1

¢ v 29K J d osT (1+322) + 2 _k’k‘, 2 ginT (1+322 $ T > L2,
2 ) £ _
2%y v 4 7’ T3, Yy 2 r>1 . (5D
o
But 1 /3T
1 , .
d2 cosT (1+3 2) = —=— J du [cosT cosu? - sinT sinu?].
| geom angr -z |
° (52)
For large T, we may replace the upper limit by « and use
2 = 2 o1 G
du cosu® = du sinu“ = > Y2 (53)
o o
to obtain
1
2y o L )T - ai
J d;}cosT (l+32V) e (cosT l31nT),
© T >> 1 (54)
Similarly
1
J d}}zsin’l‘(l+35_2) = Z:-LT_ J—g—f [cosT - sinT| , T > 1 . (55)
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It follows that

LZ

9, = L (cosT - sinT)I} + 0 (;ﬂ + O(Erﬂ] , T > 12,1 (56)

vérT T
On the other hand, for L >> /T >> 1, the oscillations of the form

sin 2 . .
(cos) (%;,T) may be ignored and one finds

6, ¥ & cont [1 +ol2) + o(giz)} T (57)

From (56), (57) it is evident that the "tramsient'" contribution

_1/2, independent of R. To be

will die out at least as fast as (wot)
sure, this is not a very rapid decay, and it appears that, even
neglecting boundary effects, one may have to wait many plasma periods
for the onset of the "steady state."

This completes the study of the "slow particle" problem. It will
be noted that we have found a number of qualitative differences from
the usual moment equation treatment. Since we have assumed u << Vmin’
where Vmin is the thermal velocity of the slowest ion, it is doubtful
whether these differences can be tested experimentally. (A treatment
of the region Vi << u << Ve, which is slightly more difficult, has been
given by Kraus and Watson.3) It should be pointed out that the quali-
tative differences found here also occur in the common (but somewhat

unrealistic) model of an electron gas in a "smeared out" positive

background.
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IV. Superthermal Particles

We now turn to the case where the injected particle is travelling
much faster than the thermal speed of any of the components of the
plasma. 1In this case, it is convenient to write the first term of (12)

in cylindrical coordinates with u as theE}—axis.

A q 7d¢ fdk . * dE}ei[kg,(Ut"})—k_._R_,_cosq)] .
= o2 LA X f _ - . 5
1 27 / 4 < (ké + k%) A (%u, /ka + k2 )

We propose to do the %} integration by closing the contour in the
upper half plane for ut > 3—(behind the particle) or in the lower half
plane for ut <'§» The following properties of A_(%gg, /ig;l_ﬁgnin the
complex kg/plane may be deduced from (10) or (16): (a) It has branch
points at k3/= + ik,, with branch cuts which may be taken to run from
ik, to i~ and (-ikl) to (-iw). (b) In the lower half plane of , A
is analytic except for the branch cut, has no zeroes, and approaches
unity on the large and small circles |E§J-+<nand E;’+ -ik,. (c) In the
upper half plane A  has an infinite number of zeroes, approaches unity
as [E}j -+ o, and approaches either 0 or « as k3,+ ik,, depending on
the direction of approach (the exact behavior will be shown later).

We first discuss the potential in front of the particle, 5; > ut.
In view of (b) above, the integration from (—m,é) may be replaced by
an integral over the path C of Fig. 3. The integral over the large circle
clearly vanishes; to evaluate the integrals around the branch cut and

the branch point (which is also a pole) we need to consistently define

1/2 -
the phase of (%§’+ ki) . We first note that A may also be written as
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e k. u
A_(kg}l, /k2}+ k%) =2)‘<ﬁ§;%§-177 , k§+ kg) (58a)

and ) is analytic in the lower half plane of its first argument. Let

us choose the phases of E; + ik; in the following way:

) i, i¢2
k;' - ik, =R € k}+ ik, = R,€ , (59)
3 u _I 3m
-5 <427 7 <9, 2 s (60)

and (k%.+ k_%_)l/2 is defined as
i(¢1 + ¢2)

04 + D2 - /R, @ 2 (61)

It is clear that this choice of phase locates the branch cuts as stated
above. In fact, we may note the phase of (%%A+ ki)l/z just to the left

and right of the imaginary axis as follows

6. + ¢ ¢, + ¢
() --2 . (55 -1 mgew, (62)
L R
¢, + ¢ b, + ¢
(12 2) =(12 2) =0,"'k_,_<]:m13<kl , (63)
L R
o, + ¢, o, + 9,
Pt -3 ) e e @
L R
On the small circle in Fig. 3, %3,= -ik, + € eiq’ - g-< a < %}- (65)

and the dielectric function is

ky “Ei(o""lzr’)

D" (u e e ,» =21k, € Gia) , (66)
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where we have used (61) with

Since the first argument of (66) is in the lower half plane, we may

use the asymptotic form

_ 1(1 + a) ‘ w2
_ 1 .
limn 2D (u EY3 e 2\2 , —2ik,€ ela =1+ = 5 s
€0 - kLu

where w, is given by Eq. (44). Denoting the contribution of the small

circle by ¢1 s we have

p
pr w . -ik,R,cosé -7
q k,dk, €. ~k, (z-ut) (i ioc:
= 2n? f d¢f l1 -.l- w 4/k,%u® © Ly f 10 dg
1 _ o
o o ° 37 ( 21kL€e )
2

¢ 2 T2k, e
= Tm /d(bf kLZ n wozlug > 3, > ut (67)
o o

The integrals in (67) may readily be approximated in the limits
I% - ut| >> u/w0 and |§ - ut] << u/wo. For the former case, the main

contribution comes from k, << wo/u, and one finds

-k, (} -ut+iR, cos¢) 2\
¢1 = (qu?/2m10 ?) f d¢f dk,k{ € ll + O(uz/mgi}%—%t‘ )]

do[l + O(uz/wle‘UtD]
(quzlmu 2) f (}—ut + iR,cos¢) 3

]

3 - 2 2
(quz/wglﬁ—gtl ) [3 _u:zlt - 1] [l + O(UZ/“’(Z)II,%‘}\{‘:I )}

Ny

w,|R = RE|fu >> 1 (68)



-22-

On the other hand, in the opposite limit,

|
7|
oo | <
rt
B~
ol B
(=3 [o]

. ~k,L($) 1 1]
d¢./Pdki e kl—in/u - kl+iwo/uJ

. o _ iwoL(¢) - . iwoL(¢) © .
1
T W) TRt e f d¢[e vox de e /y-e ./;ye /Y]}
R N .
o . —iwoL(¢)/u iwoL(¢)/u

w L($)

(y - 1+ log wOL(¢)/u)'*O(wg1L(¢)f2/u2)]§

I
£0
L N
2]
o |-
ct
¥
3o
oL
=
fr—
N
+

q w_|R-ut w—ut) |R~ut ]|
o'v L (o] Y
= 1- z - + log == (@-ut+|R-
- [ ()
+ (wo3|§¥gt|3/u3).§ s wolﬁ—gtllu << 1 s (69)
where we have defined L(¢) E;;»-ut + iR,cos¢ (70)
and used the integrals
27
do¢ 27
i =f : -2 , (71)
1 a + ib cos¢ JaZ + b2

i 3a2
2aZ 11 T (@Z¥b2) 372 [a7+b2 - 1] > (72)

f (a + 1b cos<1>)3 -

N~
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27
pvrTw
I, = f dé¢(a + ib cos¢) log(a + ib cos¢) = 2w ;a[l + log <a+\/; +b )J
5 /
- /a2 + b2 (73)

Thus we see that the contribution to the potential near the particle
is approximately the potential of the bare charge, while far from the
particle there is a screening effect, leading to an R--3 behavior. (We
shall demonstrate later that there is no induced'charée in front of the
particle.) The potential in front of the particle is due mainly to the
integration around the small circle at the branch pole (Fig. 3) that we
have just calculated, because, as we shall now show, the remaining con-
tributions from the straight lines along the branch cut are negligible
for a fast particle.

The contribution of the straight line paths in Fig. 3 can also be

estimated without difficulty. Putting
k}(= - i(k, + w) ’

using (61), (64),and calling this contribution ¢1B’ one finds

. 27 L o ~ik,R,cos¢
i 1L = (k,+w) (2 -ut)
b, =57 [ a8 [ ax.k pfdwe e , L
B 27 1L wlw + Zkl) ;ZS((W+kl)u
o o o R W(W+2k'»
Y (wt2k,) -
1
RN , 2z >ut . (74)
I
w(wt2k,)
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In each term of (74), the first argument of. ) is real, and of
magnitude > u. Since we are assuming that u >> V0 for all ¢, we may

use the asymptotic forms (readily obtained from (16) for large /k)

_ u(wtk,)
v *r Y - W(W“l'?-lﬁ))a’@1 + io@z (75)
Ve (w2k, )
where
% .“‘o2
uz(w*-l--kl)2
" w(wt2k,)V ?
k Zu(utk,) © °
L, = “'%; [wGr2k,) 1372V > (77)

where W, is given by (44). It follows that (74) is given approximately
by

-ik,cos¢

bp % s/zfd¢fkdk e

k 2 u(w+k ) u? (st ) 2
fue R TR ey
7 (78)
5/2 2
o [w(wt2k,) ] / [l + mkl—)z}
It is convenient to introduce a new variable by
e
w =k, [%ﬁszt4L -1 } R (79)

or

ky /e ¥ 2Kk7) : (80)

<
(]
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whence
o -ik,R,cos¢

_ 3. 4 dkl e
¢.8 = 13/2 ¢ i, 2
(e}

(o}

2 (2
u (ve+l1)
k 2u - v

© dv v2 2: 3 e g o o e:ikLRLC°s¢
: g g 1K
7 7 =%3/2fd¢fk2( 7T\ 2
o (o} v 1+ ——8—7>
l? + " k; & +l)] o o , kl u
- ) _ u? (v2+1
2 2 2 k “u v
fdvzv (;7 +1) 22 O'V e g (81)
5 [v +vo (ky)] @ o
where
vo(kl) = . — . (82)
w
1+
k12u2
uv?
= ‘?77?

Because of the factor € , the integrand goes to zero rapidly for

v > VO/u, therefore, an order of magnitude estimate of (81) may be
2 _u2V2/V 2
obtained by replacing the factor (1 + v2) € O by unity and the

upper limit of the v integration by Vclu. Thus



)
2 ty2
o -u</V
Zi:lk 24 —u2/V02 V /u o q 27 dk, @ ik,R,cos¢ Kk 2?9
: 5 Y, Yo f (w3 )2 7 2q3/2 f d(b_[ k,? s v
. o A o o
£ V V

g
v 3 arctan -
o} uv

v 2
(o] g
2uvo (1 + e 2 Vo )

(83)

In order to get an order of magnitude estimate of (83), we divide the ky
integral into two regions, corresponding to v, << VO/u and v, >> VO/u.
For Vo'<< u, theée regions correspond approximately to k, << wOVO/u2 and
k, >> wovg/uz. The square bracket in (83) is easily estimated in the
two regions, and assuming there is no resonance in the region

k, & wOVG/uz, one has approximately

2 2 .
~us/V 9 -ik,R,cos¢
2 27 ka0 7 | 9oVo/% ak, 6
n, %7.2_ d —_
¢].B'\JZ'IT f q)Zo_ VG 2./ Vk'2+_.ﬂ.2.w2
o o L u
- -ik,;R,cos¢
2v 2 dk, €
= f 2 (84)
L
w V_/u?
oo

-

The order of magnitude of the remaining integrals can be estimated

without difficulty, and one finds
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b p X a2k, € volwy— € (85)

o ¢ Vmax

where Vmax is the thermal velocity of the fastest component (usually
electrons). Thus for highly suprathermal particles, the branch cut con-
tribution may be neglected.

We now turn to the calculation of the field behind the particle
(ut >é3). In this case, the contour of the %}ﬁintegral in (58) must
be closed in the upper half plane, and one finds, in addition to the pole
and branéh cut contributions,residues from the zeroes of A™. We will
also see that only part of the residue contributes from the pole at %5,= ikl,

Specifically, on a small circle around kg’= ik,, one may write

iy _
k}= ik, + € € , —%T-r'<y<w/2 s (86)

and the corresponding dielectric function, according to (58-a) and (61) is

_ kl -;'('TZL ""Y) iy
D |wy5e € , 2ik, €€ ], (87)

We see that the first argument of (87) is in the upper half plane. It

is then easy to show from (16) that

lim 1 i(% . f) iy 0 2 <oy <o
- = , _ 0 2
€—>o’@ u Y3 e s 2ik, €€ )—l+m, s

kil
0 <y <-§
ifm -1y
= (L _ 2 _ 2
_ [ 2 \2 3Y) KU tk,u” € .
= Vme € Ly e |[—ggr | = sy <0
= c o o

(88)
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It follows that only half of the residue contributes at EZ'= ik, .

The result for ¢1P behind the particle is thus just one-half the
result ((68) and (69) or (67) withég - ut replaced by ut —;?) for the
corresponding point in front.

The contribution from the branch cut again proves to be negligible
for u >> Vc; we now turn to the contribution from the zeroces of A™. If
we are very near the particle, there is no obvious reason to assume
that we can neglect the contribution of any of the infinite set of
zeroes of A~. However, if we are well behind (i.e., several Debye
lengths behind) the particle,we may restrict ourselves to the "least
damped" poles, i.e., those with the smallest imaginary part. These
are the usual Landau poles, only now expressed in terms of E;; We

assume that for these roots

[Re kglu | v, allo, (89)

Yk 24 Re kg2

and

Im k} << Re kf' . (90)

The integral term in (16) may be approximated by

L x2 1,2
€ 1 3
dx € = F— 14+ ==+ cee| L >>1, (91)
5 2 L 212 4LH

and we may write

k,u .
,@-(—-Zt——— g+ klz) =D -iD (92)

‘1?2 + k'.'_2
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where
2 2y 2 2 2
DG k) X1 - s __612 Ry Vg 2t KT
1 },’ L l;zu2 utg mckgL*
ky
+ .. ., kg >> , all o, (93)
65” /(uz/Vaz) -1
and

42, VoS> kczﬁig" 2427y 2
k ,ky) = ‘ -k 2 '2 .
AN U . o(kﬁ” K,2)3/7 °*¥P [ }u As (1;_‘+ ky )] (94)

In view of the assumption (90), we seek zeroes of;Zrof the form
13; +k +id, ld | << |k0{ (95)

and take ko to be the positive real root of

"@1(ko’k-'-) =0 (96)
or
7 .
2 2y 2 2 2y 2 2 2y 2
K = “o + 3_sznoec5 Vs + “o 4 3 Encec Vo + bk P8 Vo
o u?2 u = m 202 ut m ut m
o} g fo} g o
(97)

It will be observed that (97) satisfies (89), provided that

(98)

where Vmax is the speed of the fastest species in the system. In
evaluating the k, integral, we will have to check for consistency; the
main contribution should come from the region described by (98). So far

we have assumed that u > Vc’ all o; the stronger condition u >> Vo has
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not been needed. 1In view of (98), the term proportional to k_,_2 in (97)
is small compared to (u)o/u)L+ and we could expand (97); however, in order
to retain the maximum range of qualitative validity, it is useful to

leave (97) as it stands.

To determine the damping do’ we expandlzy_in the usual fashion, i.e.

1350
~ = i -1 =
L =0 & k) + id —Laly) o ik k) H L =0
. ’ ?‘_ﬂ{
.o
(99)
or
| QU )
- N
° D
=
o
; 13—&( ulk 2
0 _ o
V 2(k %+k,2)
kz e o (o] -
ﬁuakou§ \'/
q
oo 72 . (100)
3/2 S —
20 2 (k 2k, %) |1+ 7"
o
The contribution of the Landau poles defined by (95), (97), (100) to
the first term of (12) is then given by
9 ~ik,R,cos¢ -d (ut-~
m © - - 3 o .
9 k,dk, & k°e sin k (ut—j)
6. = __quZ_ do UL . -0 0
1L Tw 2 "k 2(k,) + k,? n e 4V ? )
0 o - - 6T g ©
) b, )
uw © 5 m
o o
(101)

So far, the number and properties of the components of the plasma
have been left arbitrary. For simplicity we now assume that the electrons
(velocity V, mass m, charge ~e, density n) are much lighter and much

faster than any other species. Then



4Tne
© N 2y Ty 2 (102)
o

Kk = 8rne< . /2 w
e "VmvZ 7y (103)
Introducing the dimensionless variable
x = ky/k, s (104)
and the shorthand
v
N =y, (ut —3)/(\/7u) = [ke(ut -ﬂz)] (5‘5) > (105)
_ 3v2
a=1+%+ .EZ . (106)
w(ut—Z)
b= —= - Hut =2 : (107)
Y2 u k R, L
e —
M= u/vV , (108)

*
one may write (101) as

* Strictly speaking, the integral in (109) does not converge. This
is because the root (97), (100) is only valid for x << 1, For x >> 1,

the appropriate root is (E;/ke) N 32L1€¥L35— ,» Wwhich gives strong damping.
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o

T 2n ~iNx cos¢/b
¢1L=‘}z(qke)Mfd¢fdxxe
) o

2

3/
(a + Jal + 12x2) sin N /g + Va2 + 12x2
[a + VaZ + 12x72 + 4M2x2?]

242
a + Va2 + 12x2

2
_ 2/7 N M3[a + /aZ + 12x2] e
ala + va2 + 12x2 + 4M?2x2]3/2

X  exp

(109)
The condition (98) implies that the main contribution to (109)

should come from the region
x << 1

In addition, we will assume in most of what follows that the point of
observation is far behind the particle; specifically, a number of Debye

lengths much greater than the Mach number. In other words, we assume
N> 1

In this limit, (109) may be evaluated approximately by the method of
stationary phase. The principal theorem employed may be stated as
follows: If A is a large number and f£(y), g(y) are continuous, infinitely

differentiable functions on [a,b], then
b

[ v e 2

a
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z;enf(yn) ﬂ—g%%—')—r exp ;i [g(y)) + (n/4) sgn(g"(y N1 *
n

2
£' (v)

t@,)

3

x [1+0(-1/2)], }}\g"(yn)j >>

£ o] > g™ oM @m D s, (110)
where the y, are the roots (if any) on [a,b] of
g',) =0 5 (111)
and
€ = @ar2y, if y, = a or b,
= 1 otherwise (112)

If there are no roots of (111), the integral in (110) is 0(A~!), and
may be evaluated more precisely by partial integration in any given case.

Equation (109) may be cast in the form

©

2%
iNh+(Xs¢)
o =35 f @ faxaw Tre (113)
o o h

where
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—_—e 32
quX(a+/a2+12x2)/
e
Alx) = - x
mala + Va2 + 12x2 + 4M2x?]

2 2
2/71 NM3[a + /a2 + 12x2] exp [_ M2/ (1 + &M% )]
\ + Va2 + 12x2
S — S = » (114)
ala + va2 + 12x2 + 4M2x?]

h, (x,9) = j'/g + vaZ + 12x2 - x(cos $)/b (115)
Inasmuch as A(x) is not too rapidly varying in the sense prescribed

in (110), we may apply (110) to (113). One finds

+ 6x _ ftos

- b
Va(a? + 12x2) + (a2 + 12x2)3/2 (116)

It
+

In order for real, positive roots of (116) to exist, one must have
+cos ¢ >0 17

One then finds the roots

L 2 3 1/2
(¢) = §.__h__) - é.( b - §3.+.l( b ) X b 2 _ ba
%:(8) = 18 \cos b 4 \cos ¢ 12 = 8\[cos ¢] cos ¢ 3

For these roots to be real, one must require that

b B
|cos o] <3 é (119)

The condition x << 1 cannot be satisfied by the upper sign of (118),

inasmuch as one can easily show that, for that case,
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x, > a/2 = 0(1) (120)

Therefore, we discard this root and consider only the neighborhood of

b 2 3 Z 1/2
X=X(¢)= é——-—b—-—- __a.. b ) __.@‘_2.___3. b b _é_a.
o - 8\cos ¢ 4\cos ¢, 12 8 lcos 4>l cos ¢ 3
(121)
The root (121) will satisfy x << 1 if
b 3
|cos ¢| <3 J; (122)
s . iy e . . 3 b
which raises the possibility of expanding (121) in powers ofﬁm .
However, we will leave (121) in its present form in hopes of obtaining
a qualitatively valid result for the region
b ~ v4a/3
In order to apply (110) we need the following:
A 3T b \2_ 4a
2 - —_
3%h, (x59) - |cos¢| <cos¢> 3 x[ 3b ( b )_ b4a
8x2 — = 4b3xo 1 |cos¢| coso 3 ’
7o

(123)

and

3x_{(cos¢) 2 ‘[ f
s b a b b 4a
hi(xo’q’) =t ba (cosq&) -3t |coso| (cos¢/ T3 ’

(124)

where we have used (116), (121) and the simplifying relation

7 _ (3/2)b b _‘/ b ; _4a
a% + l12x° = |cos¢| (Tcos¢[ (cos¢ 3 ) . (125)
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It will be observed that (123) is zero for

b ‘/E
lCos¢| 2 3
so that the method breaks down for this region. We will return to this

point later. For the present, we consider only the region

a
b>2 3

for which 82h,/x?

Then from (110), (113), (117), (121), (123), and (124) we have

w/2 27
 263/2 Dy iNH(¢)
oL ¥ 51 \I—N—(f +f)e
o 3n/2

3n/2
Xo(¢)

-iNH(¢) d
- f e -]Eg_ﬂ_ Ax)) ’
/2 ‘LEEE: ba ‘#J&__ _ ha
cos2y 3 [Bb + cos?d 3 ]

b - 2/a/3 >> N-2/3 (126)

where A(x) is given in (114), and where

3x_(9) |cosg] 2 J i
o b a b b _ 4a 1
H(p) = ab [(cos¢) T3 + Icos¢| <cos¢) 3 + 4

(127)

The ¢ integral may also be done by the method of stationary phase.

It is evident that

dh, (x,¢) ax_(¢)
H'($) = + “_;EE“E_ + Xg ng?,¢) = i_xo(¢)(sin¢)/b . (128)
¢ |x=x_($) ¢ |x=x_(¢)
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But xo(¢) is not zero unless cos ¢ = 0, in which case the coefficient of
+iNH(¢) . . . . .
e in (126) is zero; therefore, the contribution from the region

around xo(¢) = cos ¢ = 0 is negligible. Thus the roots of interest are

those for which

sin =0
¢n
or

L= (0, =, 2m) (129)

It follows that
H"(¢ ) = £ x_(¢) (cOS¢n)/b =x ($) /b , (130)

where we have used (117). The theorem (110) may now be applied to
(126) to obtain

L 4mb2Alx (s )1 cos NIHG) - 5]
i1

, b - V4af3 >> N-2/3 (131)

Jbz——+3b %‘i
(it will be noted that xo(¢o) = xo(¢1) = XO(¢2))-

Equations (131), (129), (127), (121) and (114) give a complete

description of the "Landau" contribution to the potential for the region
b - 2/a/3 >> N~2/3

(this restriction is imposed because of the restriction |g"| >> | (g™ P /a11/3
in (110)). The result (131) may be simplified considerably except in

the neighborhood

- /4a/3 % 1
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For b >> /4a/3, everything may be expanded in powers of v4a/3b2. One

has
b >> Y4a/3 (132)
and
) .
H($ ) ~ n/b = V2a [1 - a7t 0(-2—;}] » b2 >> 4a/3, (133)

Using also (109), one finds

2k Ma [1 + %—g%; + o(%i—)]

- a M%a? X
o [o+ ot + EE]

¢lL

ZNm— e"l/ [M..-2+3.2/9b2]

X cos ;NV?E-[l - af12b? + 0(a2/b“)]€ exp {-

M2 + aZ/9p2]372

b >> V4a/3 (134
Similarly, if

N"2/3 << b - VEa/3 << 1,

one may ignore terms Vb2 - 4a/3 compared to unity, which gives

vh - ¢ 10(b ~ v4a/3 P
xo(¢n) = g' L- l}alll“B?jLa;/3 * ;1/2/;'a/) * o[ - 4a/3)3/2]

b - Y4a/3 << 1 , (135)
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H(  _ 3/3a b - /4a/3 YR i
¢n) -y =0 1+ ‘—ZF—— + 0{(b - V4a/3) ’ (136)
a

and :
4qke-33/8a1/8 exp [} l§ﬁ£§§:§li] cos[?"/?:;N (L~+ b—/éa/3ﬂ

f1L M1+ -3 VEaT3y 1/
Eg;'(b - v4a/3)

+ 0(/b§-4a/3{l, N-2/3 << b ~ V&aJ3 << 1 . (137)

Inasmuch as "a" is 0(1), we see that the potential is exponentially
damped with a damping length of order (Debye length x Mach numbed.

We now turn to the region
b - V&aJ3 << N-2/3 ,

where our previous approach breaks down. The reason for this breakdown
is very simple; for this region, not only h;(xo) but also hg(xo) is

nearly zero. Thus we have a higher order stationary phase point at

X =X . This situation may be treated by standard techniques. One

needs the third derivative

33n, (x,¢) _ 5/2
— voOF l-<§> I VEETT << 1. (138)
X _ 8 \a
x=x (¢_)
o n
o= ¢

In this limit it is not difficult to deduce that iN33hi(x,¢)/3x3 x=x(x*xo)3

-] 0

iNh, (x,9) iNh, (x_,4) 3
f dx A(x) € by AGx ) e / d(x-x )€

(o] -X
o
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/ 6 /3 AGx) eiNhi(Xo9¢) i sgn(33h,/9x3)z3
== d . +

\N M Yo f 53h /Bxg € 1/3

ax3 , ‘ * lx=x0 X
X=X - = ]

i 33h, (x,¢) 1/3 iNh, (x_,9) © iz3sgn h™ (x_,4)
N l% Py B Ax)e ° /dze *a2?

| |

o -0

~ 6 1/3 iNhi(xo’d)) 1
= lNh G @ ,¢)l Atx,) € &l (3!) (139)

The ¢ integral can be done in exactly the same manner as before, and

one finds

quZH/G 35/ 41/12 (%.L, [ 18/?Ne-3/a]
_ exp |- 8/mNe==/%
MN5/6 /& (1 + 3/M2a) a?

« con |28 (1 L) ;s
2v3a

*L

b - v4a/3 << N-2/3 (140)
We now turn to the region well outside the Mach cone, i.e.

b << V4a/3 .

where the moment equations predict no induced fields. 1In this region,
the factor e_lNX (COS¢)/bis dominant, and the main contribution comes

from the region
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= o
A

N X <<1

Noting that
2T _
f d¢ e-—iNx(cosqS)/b = ZﬂJo(nx/b) ,
)
one estimates from (109)
%o
AT 2qke V2]a M sin /QEN/ dx xJo(Nx/b)

o]

%1

b .
- 2qke v2/a M(N) xOJl(Nxo/b) sin V2a N
b << 1 ’

where X is chosen to be much less than unity, but greater than b/N.
A good estimate should be obtained by taking X, = 1 and using the

asymptotic form for the Bessel function, which leads to

4qkeM b 32 N ™
¢1L No- — (f\f) sin v2a N sin (:5 - Z) s (141
Ta
N/b >> 1

The same estimate is also valid for N < 1, provided that

N/b = keRl << 1,

This leaves unestimated (aside from the '"transition regions"

R, A ke"l, ut _5‘ Y u/mo) only the interior of the cylinder defined by

keRl << 1, wo(ut —3)/u << 1.
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For this region, it is convenient to rewrite the first term of (12)

in spherical coordinates and subtract out the Coulomb field, i.e.

© 1 2w
ben-degefafaf a
)

-1 o

eik[(ut—j)uml/i‘—‘u'z“ cos¢] [ 1 i ]
A (kup, k)
qke2 P 1 2m ik[(ut--aipu+R_,_¢1—uz cosd]
= - —5 fdkfdufd¢e L)
27 k% + k 2Y(My)
o -1 o €
(142)
where
X
—x2 ¥2
Y(x) = 1 - xe /;i+2/dve (143)
o
Introducing the notation
S(u,9) = ke [ (ut —é;)u + R,V/1 - uz cosé] (144)
and the substitution
k =k v/§(u,¢) s (145)
one may cast (142) in the form
27 1 wsgnG(Uﬂb) :
qk §( iv .
_ e u,9) Y(Mu) @
q)li = —‘—2'“2 f d¢ /duf dv V2 n (52 Y (Mp) . (146)
o - o
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Because of the Y in the numerator, the main contribution to the y inte-
gration will come from y  1/M; from the definition (144) and our

assumptions about the smallness of keRL’ ke(ut —é;)/M, we then have
|6(U,¢)| << 1, all u,¢ . (147)
From the definition (143), it is evident that
lYx)| £ 1, all x, (148)

so the gecond term in the denominator of the integrand in (146) is a
small (complex) quantity.

The v integration is not difficult to do in terms of known
integrals, although one must be careful with the phases. One finds,

using partial fractions,

Xk 27 1
ak, 1/2
¢]_i = - -é-T-r-Z-./dqb / dpY (Mu)Sgn(ﬁ(Usd)))
o -1

1/2 1/2 1/2 /2
etlslY % sy |t fs|Y |; AoTT -fer e
5 f do € -e o do € -1S(+§)
(¢} o] 3
27
o 1/2 % que™ ak, 1§ . 1/
+ i sinh |6|Y f1/2 e d¢fdu)+2Y (M)
|sY | o -1
+ Y (My) [15(1 -y - log|sY |- 3—5‘—12'-3—‘1) - %IGI] + 0(52)£ . (149)

Here S(§) is a step function, and we have taken

-7 < arg Y(Mu) <1, (150)



~Lly—

1/2
so that Y is in the right half plane, and used the definition

1
a =5 arg Y (Mu) (151)

The ¢ integrations may be done with the aid of the known integrals (see

Appendix) 2m
f d¢ |a + b cos ¢| = 2n|a} S(la] - b)
o
+4[a arcsin %‘+ Vb2 - a?] S - |a|) . (152)
and 20
J/. d¢(a + b cos ¢) log |a + b cos o]
o

= 27a )1 - log 2 + S(b -~ |a]) log b

+ S(|la] - B) [log(|a| + VaZ - b%) - E_E:_IEEH , (153)

where S is again a step function.

It follows that

qw w (@t-2) 1 w_(ut-2)\
s . =-—2 ¢ R _C2,<Y+1og_<_>___j_)_}

11 u 1 u

| VY2 u
C, (8w _|ut-R]
. [ oln
C,* C, + cs(e)l + 2 , (154)
where
- 1/2
c - L fdw ' ) ) (155)
a -M
M
c = 21 fdw w Y(w) . (156)
2w
-M
M
c, = -j dv |w|YGo) , (157)

-M
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M
c, ='-;’TL- f dw wY (w) [log|Y(w) |+ i argY(w)] , (158)
-M
M
cs(e) =—%} dw wY(w) { S(Msine —IWI) [log VM2 - u2 tanb
-M

. - ST 2eint e
+ isgn w cos ! (M> ] + S(lw] - Msin 0) log <|w| ply TSI Y M%sin2p

T A— cos 6

(159)

M
Ce(e) = '_;2' fdw Y(w) {‘/Mzsinze—w2 S (Msin6- IW‘)
-M

- 1isgnw VwZMZsin2e S(!W‘—Msine)] . (160)

Here 6 is the angle between(}%t - ,lsl)and u. We show in the Appendix

how the integrals (155)-(160) may be evaluated approximately. The result

is
quy | ug (ut—;) w Ry o,
¢1i = |2 + — |- - 21o0g " + log o (ut—aj-l%—,%tl)
: W, }\1Jt—-§l 1 :
+ A(e)] + e |- 1+ B(e)] , (161)
where
" 2 2 )
ol M2
ACO) = - —é—jdw we ¥ log (W cosf + vw?-M2sin 6) (162)
/r ' w cosf - Vw2-M2sin?6

)
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and

B(p) = _f dw we ~w? Yw2-M2ginZg (163)

Msing

The functioms, A, B have the following properties:

2
A(e)é’logMSlne—%fwwew log w, Msin® << 1
T
o

M2ain2 .
vo- 2 e MEINTE D yaing > 1 ; (164)
n,
B(B) =2 , Msin® << 1
M2ain2
vo2 e SN0 yeing s> 1 (165)

In particular, we note two limits: (1) At the midplane, ut —;F 0,

and

I A P
¢1i - = 32— § (166)

Comparison with (69) shows that the potential is continuous across the

midplane. (2) On the axis, R, = 0 = siné,

W, (ut-‘g 20 (ut-

)
-9 < _ 2 .
"’11 " [y + log " log M 1

+ "§_:f dw W (logw);wzl (167)
v
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This is also continuous at the particle, but the corresponding electric
field is both discontinuous and singular, just as in the moment equation
treatment.

Finally, we should say a word about the "transients" given by the

second term of (12). This integral may be written approximately in

cylindrical coordinates as

27 © o =ik ivw t
N A0, -ik,R,cos¢ ,~dk, € : 11 e ©
= —— d dk,k ———— 41l
2 4Tr2f ¢f 1ky 6 j ki + k§ 5o |w. - keu + i€
(o] (o] —00 o
-iw t
o
+ W, + kyu - ie] ’ 168)
where we have used the facts that
Rew, ~ t wys Imw, << Rew, ,
.B_A__agli)l& v+ ;2_ (169)
w=wi(k) o

The use of (169) implies that the main contribution comes from small k,
which should be checked in the course of evaluating the integral (the
contributiopn from large k will, of course, be strongly damped). We
naturally assume that the point of observation is in front of the
point where the particle is injected, i.e.;5‘> 0 (in a more realistic
treatment we would assume that the half sPace.g;< 0 was empty). The

k,, integration may be done immediately and one finds
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duw, Zn - -k, [5—,|-1R cos¢l e e-.iwot
2 - T j d¢ f dkl e ° +1k,u + wo-ik_._u
o) o
o0 i ( t—z( )) * —
lmlu f d¢ e f dy v - € f v
iw . .
o _ o 1w
u -9
u
(170)
where
2(¢) = §’+ iR,cos¢ (17D)

The y integrals in (170) are more or less standard, and we will do
them approximately in two limits. First, for moR/u >> 1, the y inte-

grations may be done by partial integration, and we find

27

q cos w t q cos w_t
2 __ o d¢_ _ 0
b = 2 f 2(6) R (172)

o}

where we have used (71). On the other hand, for moR/u << 1, we use

(o]

~-X
[ =T oy - tege (173)
€
to obtain
2
" qwo ! mogf(‘b)
¢2 = Ima d¢ (mcos wot - sin wot vy + log
o
quw w Q;}R)
= —9 - ad Lv
== TCOS wot sin wot vy + log [ 7% (174)

~Thus it appears that there is a residual oscillating potential around

the initial portion of the injected particle. The time average of this
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potential is zero, and there is no charge density associated with it,

as can be seen by calculating

vZ2¢,

Po = 7 Thm (175)
from (172), (174) or more generally from (168). (There is, however,

some induced charge behind the initial position.) This result differs
from the moment equation treatment of I, at least in part because of

a different way of dividing the potential and charge density into
"steady-state" and "transient" parts. However, for the transient

contribution to the drag force we find

2
_— 8¢2 " q“ cos wot
T 1792|R=0 © 7 uZt? ’
3?ut
wot >> 1 (176)

in agreement with I (the distinction between transient and steady-state
would appear to be rather meaningless for w, t X 1). For fixed lﬁ-gt{,
it will be noted from (172) that the transient electric field is pro-
portional to (mot)-2 as wot > o,

Before comparing our results with the moment equation treatment,
we make a couple of remarks about the charge density. First, the
induced charge density in front of the particle is zero, in agreement

with I. This can be shown by calculating

g, = — Vchi Qa7

from the approximate expressions (68), (79), or more generally from

(67). Secondly, the total induced charge behind the particle exactly
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cancels the charge of the test particle, if transients are ignored.
This can be shown by calculating% E-d% where the integral is over the
surface of a large sphere. Since ¢lp and ¢1L both die out faster than
R at o, the integral gives zero. However, one should note that the
surface must be a very large one indeed., According to (134) and (105)-

(108), the potential on the axis (b > «) is given by

wo(ut—g)

] x exp {- V2r ke(ut—é‘)M2 e_Mz > (178)

N 4gM2
L 3(ut-2) cos [

u

so that exponential decay does not set in until
~2 aM?
k (ut-2) ¥ M7 € ,

which can be a very large number fof large M (for example, if M = 10,
w2e™ ¥ 1043,

A more complete treatment thch included correlations or 'collisions"
would presumably show that the "wake' undergoes 'correlation damping"
and thus extends only for about a mean free path, even well inside the
cone, and even for very large Mach numbers. As noted previously (cf.
(137), (138)) the field near the cone is damped out in a relatively
short distance. Strictly speaking, the integral for the total charge
from the moment equation treatment diverges; however, if a small
phenomenological collision term is added, ome reaches the same con-
clusion about zero total charge.

The regions where we have calculated the potential are depicted
in Fig. 4; we propose to make a step by step comparison with I. 1In
order to make such a comparison, we note the slight difference in
definition of the thermal velocity and Debye length; v, and ko of 1T

are related to V by
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1

2v 2 =32, k2= g 2/v 2= 2 2/3V2 (179)

We have

(1) In front of the particle (Regions I and II)

The relevant equations gre (68) and (69), indicating an induced
potential which screens the Coulomb potential at large distances
(giving an R™3 dependence for the total potential) but which is much
smaller than the Coulomb potential for small distances. As noted pre-
viously, the induced charge density is zero. These results are in
quantitative agreement with I, as may be seen from equations (135), (29)
of the latter (the potential was not calculated as accurately [cf.
(I.A7-3), (I.A7—8), (I.A7—4) and (I.A7-6)] but this is not a defect of
the moment equation approach).

(2) Well behind the particle and well inside the Mach cone (Region III)

Since only the charge density was computed in I, we straightforwardly
calculate the latter by applying (177) to (134); using also (103) and

*
(106)-(108), one finds

qke2 13M2R, 2 + R,2 u MR, ¥
= —e —— — = =
Py 7 6ﬂ(ut-j§ I} + ﬁ7.+ 3(ut:3) 0( > (ut=-2)2 °? m0|§'EET’ (ut:;)4)
w, (ut=3) 3 M?R, ? - R,? M“R, “
cos | —— 1+ Mz 3(ut—;92 + O(M ’ (ut-;pz s (ut°592> , (180)

* As in Regions I and II, the "pole" contribution (67) or (68), (69),

gives zero charge density.
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where we have dropped the exponential factor in (134), thus assuming
2 @M?
ke(ut-j) << M2 (181)

To the same approximation, one may write equation (29) of I as

k 2 M?R,? t-
L S P l]cosf’g(_u_}_)_1+3
iV bn(ut-3) 3(ut-3)§J u w2

R,2M2
— ] (1.29)

- 3(ut-a:;)z

We see that the oscillating factor in (180), (I.29) is in exact agree-
ment to the order calculated, and the coefficient agrees to leading
order, though there is some discrepancy in the corrections. Thus the
agreement in Region III is very good indeed.

(3) On the cone (Region IV)

The neighborhood of the Mach cone is the region which produces the
greatest discrepancy between our results and those of the moment equation

treatment. The relevant equation is(140), and one readily shows that

I -3
9V 2m wo(ut—}) e }

U

qkez(wo/u)1/635/“(%)! expl—

V2 n3/2(ut73)5/6

N
i

o] X

33/2, (ut-2)
X cOos 25/§u 7 , R, = Zg;iggﬁ;l (182)

+ &M

*
The corresponding result from I is

* Note that our Mach cone is narrower by a factor of 2V2 than that of I.
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p, = RL = g L—%utlz (1.29)

1

Thus we have obtained the strikingly different result that the
charge density is not only finite on the cone, but is damped* out in
a distance of order M/ke. The damping is, of course, due to the
imaginary part of the dielectric function, which is, of course, missed
by any moment equation approach. The fact that the charge density is
finite, however, seems to be due to a more accurate calculation of the
real part.

(4) Outside the cone (Regions V and VI)

The relevant equations are (141), (68), (69). The regions V and
VI differ only in the form of the potential, not the charge density,
because only the '"pole" contribution, which gives zero charge density,
has a different form in the two regions. From (141) the charge density

dies out as
(oscillating factor)/(keR_,_)3/2

whereas the moment equations predict that it is zero there. While the
decay of the charge density outside the cone is rather slow, the neglect

of this charge is probably adequate for most purposes.

* It should be pointed out that we have neglected some terms which are
not exponentially damped and therefore dominate for ut—55> M/ke' One

class of such terms is described by (141) for keRL >> 1.
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(5) Near and behind the particle (Regions VII and VIII)

The appropriate equations are (161)~(163). In calculating the
induced charge density via(177), one should differentiate (162), (163)
directly, using integration by parts when convenient, rather than
using the approximate forms (164), (165). The latter are adequate for
calculating the potential (and, to a certain extent, the field) but
not the charge density, which involves second deriva;ives. One finds

(a) Well outside the cone (Region VII)

The charge density may be shown to die off in a Gaussian

fashion, i.e.

~M2ain?
2q ‘”02 MzsinzeeM sin°g

Py v V2 [R-ut|

, Msing >> 1 (183)

This is in good agreement with the moment equations which predict
no charge outside the Mach cone.

(b) Well inside the cone (Region VIII)

2
qaw,

o1 ¥ " ey 0 Meted << 1 (8o

On the other hand, the moment equations give [cf. (1.29)]

2

qw
VR © 1
Py ™ 312 (ut=32) ’ (185)

i.e. smaller by a factor of 1/3, similar to the error in the
Debye length. We should be happy with such qualitative agreement
in a region where there is no reason to expect much accuracy from
the moment equations. While it is difficult to calculate the
charge density precisely at the Mach cone, it is abundantly clear

from (161)~(163) that there is no singularity there (except at the
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particle). Finally, one should note that the Vlasov equation

breaks down very near the particle (at a radius of about the

Landau length A, % e?/mv?).

To summarize, we have found that the moment equations have a much
greater validity for fast particles than for slow particles except in
the neighborhood of the Mach cone. We should also remark that our
results showing a somewhat "fuzzy'" Mach cone are qualitatively similar

to those obtained for a finite ''blob" of charge in I.
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APPENDIX: EVALUATION OF SOME ANGULAR

INTEGRALS OCCURRING IN (149)

In this appendix we evaluate the integrals necessary to get
from equation (149) of Section 4 to (161l). We begin by proving (152),
(153). Let "a" be a real number and "b" a real positive number. Then
it is evident that

2n 2n
f d¢ |a + b cos ¢| = |a] / d¢ (l+%cos¢) = 2r]al, b < |a} .(Al)

o

For b > |a|, we define
¢1 = arc cos (-a/b), 0 < ¢, . (A2)

Then it is evident that a + b cos¢ will be negative for ¢, < ¢ < 2r ~ ¢,

and positive for the rest of the range. Thus

27 27— (I)

f d¢ |a + b cos¢| = j f f d¢(a + b cosd)

o 27— =%,

= - a(27 - 4¢1) + 4b sin ¢1 = -4a<% - arc cos(—a/b))‘ + 4/bZ - a2

= 21 a arc sin(a/b) + 4/b2 - a? s b > }al
(A3)

which completes the proof of (152). For the integral in (153), if
Ial > b, we may expand the logarithm, and only even powers of cos¢ will

give a contribution. One finds
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Zn 2n
f d¢ (a + b cos¢) log |a + b cos | =f d¢ (a + b cosg¢) {log la|
o o
21 - 2p 2p
+ log (1 + 'E‘ cos¢)} = 2ra log |a] - a f d¢ Pf:‘l(:z) .ﬁC_O_g.;)._
)
2 2p-1 .
(cos¢) 2P o
b - (2p)!(b\2p( 1 1
d = 2rafl -1
:)[ ¢ pZ—l(a) 2p-1 'na[ Oglal +Pz=:l (p!)Z 2&} 2p-1 ZP)

- - | ( §_). b)2p
- P - .
= 2ma |log|a| +p2=l:(§!)2 ! (Eb;\f} 2ra |loglal| + i E Z _(_3)

p=Ip! (p )(}

= 27a |log|a| ‘f:f(:_)() = 2na |log|a] “pZLiL (p)(a) !

= 27ma
X

b/a
log|a| - f dx Y= x2 - l]]

o)

22 12
- 27a [1 - /T5Z7aZ + log (lal + /a7 )]

la| > b , (A4)

where we have used the integral
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. 2 i(2p-29) ¢
j d¢ cos¢?P = L d¢ (ZP) e
22p p g=o0" 4

_ 2n (2p) - _2m(2p)!
22p \P 22p (p1)?2

and the factorial doubling formula

o 22}}!(}- %)!

- D

(2

For b > a, it is convenient to write the integral (153) in the form
21
f d¢ (a + b cos¢) logla + b cosp]|

(o]

27

b f d¢ (cos¢p - cos¢1)[log b + log|cosy - COS¢1|]
)

o dho .\
=b [— 27 c:osq>1 log b + f d¢ (cos¢p - cos¢1) log|2 sin (—2—1-)

[o}

2T
2ma log b + -121 [f d¢ (cos(cp—(pl)cosq)1

o

sin(¢-¢ ) sing - cos¢l) log (1 - cos(¢-¢,))

+(pl—>— ¢1ﬂ

(A5)

(46)

(A7)
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The integral of the terms proportional to sin(¢i@l) clearly vanishes,
and the remaining terms are of the same form calculated in (A4) (with
b/a = + 1 and an irrelevant translation of the angular variable). It

follows that
27
“/ﬁ d¢ (a + b cos¢) log|la + b cos¢p| = 2na[log b + 1 - log 2],

o

b > |af , (A7)

which completes the proof of (153).

Substitution of (152), (153) into (149), the transformation
Yy = w/M, and the use of the definitions (103), (108) leads to the
form (154). We now turn to the calculation of the integrals Cl-C6.

For C1 we write

M © M

_ L f 1/2 o1 /’ f Y
C. = dw Y (w) = du dw . (A8)
) L 2 L Yy ut + ()

where we have assumed that an interchange of integrals is permissible.

It will be recalled that Y(w) is analytic in the lower half-plane and

vanishes as (-1/2w?) at «, It follows that

(o]

Y(w) -
fdw Ty = % + 0, (A9)
and
M
P Y(w) - _ ./f dw _Y{(w)
Y uZ + Y(w) u? + Y(w)
~-M |W|>M
1
) 1 |u|+ —
dw[l + 0() ]
= P f Ml N ‘/_Z_lM , (A10)
M 2w2 (u? - ey ) V2| ul lu|- ——
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According to (A9), the trick employed in (A10) is not valid as u - 0;
however, the result (Al0) correctly approaches 2M as u -~ 0, and is thus

valid for all u. Substitution of (A10) into (A8) gives

1
oo u + — %
v1 fdu Y2 M 1 [ du u+ 1
Cl_ﬂfulOgu___l__ _wful u—l‘
[o] /Z_M [o]
B 1 o o o l 2P+2
1 u? (u) 4
== 12 J(.du 4+ 2./rdu == ey
T ] p=02p+1, p=o 2p+l ;;0 (2p+1)
1
sl &g 3 ¢~ 1
T
=2 eSS -Y—=> =_E_2=- (Al11)
m P___.lp p=l(2p) TTP=1P 2

The error in (All) is 0(1/M2), as will be the case in the remainder of
our calculations unless otherwise stated (of course, terms which behave
as Mne_M2 vanish much more strongly for large M, and will always be
neglected).

The integral in (156) is easy to calculate since the real part

of Y is even and the imaginary part odd. One finds

M M M )
C="2'l-/‘dWWY(W)=—‘g'dedY(W)='—2"deW2_W
2 ™ ™ 2 /F
-M -M -M
w2 . -M2
-Z—jd w2 fome™) y1 (A12)
/1? OO
Similarly
M M M o

-u?
c, = - fdwlwlY<w>=—2fdwa<w)=——2—fdwwpfd““_e
: 1 \/’I_T- 1 w
(o

-M o

- o0
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log M -

where we have used the definition of Y.

may easily be
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u -u2
- e

u e —u? -
dWPfdu =+-2--‘/.duuzeu logM 2
.12
2 fdu uzlogluleu + 2 fdu u?log
/m o /r 2

shown to be 0(1/M2). 1In fact, if

i
g(M)=Lfduuzlogl—-;Z|eu ,
VT
one has
g(x) =0 >
g _ 2 Pfgg_yie‘__:__l__zm. Pfdu
BM /’ITM < u-»M M I/'IT 7
3 1
= 3 (1+0(ﬁ7)) g

where we have used the well known asymptotic form

L

i
Thus

gM) =
and

€

Inasmuch as the second term of (Al8) will cancel with similar terms

from other Ci

oo -uz
pfduue ™ _ 1 ( 3 1
f w - M aZ \Ut e+ OGm)
3 1
T (1+0(ﬁ7)) :

112
Z log M - -Lf du u?log|ul€™
3

m

The last integral in (Al3)

2
-u
u€

u-M

's, we will not attempt to do the integral.

(A13)

(Al4)

(A15)

(A16)

(A17)

(A18)
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Turning to (158), we write

M
Cu = - i‘-/dw w Y(w) [log[Y(w)I + i arg Y(w)]
~M
M M ©
- _ i - _ i 1 _d
- fdwa(w) log Y(w) = fdwa(w) fdx ey ——x+Y]
-M -M
© (A19)
But (cf. Al2)
M
fdw w Y(w) ¥ - in/2 (A20)
-M
Because
Y(~w) = Y*(w) s (A21)
one has
M M
ww) _ _x A1
f AV Y () 2 ) WV T T v
-M -M
oot €
= — = lim f dw w ( 1 L ) ( L L )
2 g X+ () ~ 1) T ke _ 1
—oo4 € X 2w2 X 2w2
~ dw w YZ(W)
- Zixf 5 3 (A22)
M [X+Y1(W)] + Yz(w)

Inasmuch as Y(w) is analytic in the lower half-plane and Y* in the
upper, the first term can be evaluated by contour integration. For
the second term we note that, for large w, Y2 is very small, and

negative, and Y1 is approximately (- 3%7 ), so that
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Y. (w)
2 N . € 1
= - lim = -7 8(x - ) . (A23)
T 2 2 Py
(x Yl) + Y2 é»o (x - —7237 V2 + €2 2w
It follows that
M
dw w Y(w)  _ Ti _ 1
f x+Y (w) v 2% S (X 2M2 ) (A24)
-M

While the contour integration technique as applied here is not strictly
valid for x = 0, it will be observed that (A24) vanishes as x > 0 as it
must.

Substituting (A24) into (Al9), one finds
c, 2 log (V2 M) (A25)

We now turn to the more difficult angle dependent integrals CS,

Ces which can be only partially evaluated for general 6. From (160),

M
C6(e) = - %_./f dw Y(w) [VMzsinze— w?
~M

S(Msin6 - lw|) - i(sgn w)/wz—Mzsinze S(Iw[—Msine)]

M+i€
- %'lim ./ﬂ dw Y (w) M2s1in26-w2)1/2 (826)

€0 “yrie

where (M2sin?e - W2)1/2 is defined as follows

i¢, id,
Msine—w=Rle ,-1r<¢1<1r, Msine+w=Rze ,-Tr<d>2<7r,
. s1/2 _ e1(d>1'|‘<1>2)/2
(M2sin?0 - w?) = ﬂ;ﬁi; (A27)
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The integral in (A26) may be broken up as follows

M M+i€
06(6) = - %‘ d/.dw Y(w) Msing + ‘/f dw[(Mzsinze—wz)l/z—-Msine] (— 5%7)
-M -M+i€
M+i€
+ f av[ (2sin20-w2)1/2 “Msino] [Y(w) + 57]| - (A28)
~Mt+i€
The first two integrals are straightforward, taking into account the
symmetry of Y(w), (M2sin2g - w2)1/2,  1In fact
M M M W
b
[dw ¥ () =/dw Y () = zf dw |1 -2ve fdue |
-M -M o o
—w2 p u? w=H 1 1
=2€ du€@ = = {1+ 00 R (A29)
M M
w=0
o
where we have employed an obvious integration by parts. In the second
term we have the integral
M+i€ Msinb
lim f %"} [(M2sin26 - w2)1/2 - Msine] = 2 f %} [/M2sinZ6~w2 - Msiné]
€0 .
-Mti€ o)
M
- 2Msin® f %‘} = 2sinf - (A30)
Msinb

The third term of (A28) may be written as

ootié

1im J[
€-50

dw [(M2sin2p - w2)1/2 - Msing] [Y(w) + E%El
~osti€ |
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( -M+i€ oti€

f + f )dw{(Mzsinze - w2)1/2 _ Msing] [Y(w) + 3_-%7:'

—cot1€ M+i€

The second term in the curly bracket is readily shown to be 0(M~2).

The first term may be expressed as

fdw [(M2sin?8 - w2)1/2 - Msine] [Y(W) + —2‘%72-]

c

o-1€

+ J/. dw [(M2sin26 - w2)1/2 - Msing] [&(w) + 5%5] s

—oo—1€
where ¢ is a path enclosing the branch cuts (extending from + Msin6
to # «) as depicted in Fig. 5. But the integrand in the second term
is analytic in the lower half-plane and vanishes as w 3 there; then the
path may be closed in the lower half-plane and a null contribution is
obtained. The branch cut contribution may be simplified by symmetry

considerations, and one finds

Mt+ie
lim dw [(M2sin26 - w2)1/2 - Msine] [Y(w) + 2—‘}7-2-]
€20 Mrie
" w2
= - 47 dw w/we-M2ginle € (A31)
Msinb
Employing (A29), (A30), (A31) in (A28), one finds
.2
ce(e) Yo 48 f dw wwl-MsinZe € 7V (A32)
e

Msin®
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In a quite similar fashion, one may write (159) as

M Mt+ie %—
_ 2 1im o i(M%sin®6-w?)
C.(8) - fdw w Y(w) log|w| + P, f dw w Y(w);og[i S
-M ~M+i€
M ) M
2 — - e .
= - ‘/: dw wzloglwle v ‘2;]; dw w Y(W)Eog ﬁf—%?— + —15“- sgn w]
LY, M
Mt+i€
+_1 1im dw 1o Gn%inze - wz)l/2 - iw cos®
T €0 W & Msin®
-M-+i€
Mtie M-i€
2i lim 1
- o f - f dw W[Y(w) + —2;7-2-]
~M+i€ ~-M-ie€
2 2y1/ e
M2sin26 - w2)1/2 - iw cosp), 2i lim 1
log ( Moint + €50 dw w {Y(w) + T2
~-M~i€
M2sin26 - w2)1/2 - iw cos®
Log ((' Msiné (A33)

The last term in (A33) is readily shown to be 0(M~2), and some of the
remaining integrals may be evaluated with the aid of (Al2), (A13), (Al8).

One finds



N M2sin?p 2 2 —W
C5(9) = - 1og< c0s6 )+ f dw w2log|w|@

M
2 2 - M2g1
..é_f dw w2@ log (W+/w Msm26>
e

- Jwl — M2gin?
Msine w - Jw MZ2sinZg

Msin®

+ .2_ f _dﬂ arctan ( W cosb ) (A34)
T w — -

VM2s5in20 - w?

The last integral in (A34) may be evaluated exactly. Introducing

a new variable

( W _cosf
v = arctan ,
/M2sin2g - w2

one has

Msing w/2

2 dw w cosb 2cos2p cot v
m W arctan = il dv v cos?9 + sin?6sin?v
2ainl2n = w2
S WMZginle - w S

127. w/2
-1 1 sin?v _ av 1o sin?y
T v 108 cos?8 + sin?6sin’v o g cos?6 + sin4fsin?v

(o}

= log (1 + cos®) (A35)

Thus

. M2sin?g 2 o —w?
= £ + A(6), (A36
Cs(e) log [cose(l + cose)] + ,—ﬂf dw w2log|w|€ (6),(A36)

where A(g) is given by (162). Substituting (All), (Al2), (Al8), (A25),

(A32), and (A36) in (154), one obtains (161).
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Fig. 2(a) - Distribution of 0(M2) correction to charge density.
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Fig. 2(b) - Distribution of O(Mz) correction to charge density
when IMA 1is neglected.
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Fig. 4 - Regions for which the fast particle results are summarized
in Table I.
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